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Abstract
During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this

reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made

of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration

analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with

uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kine-

matics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is

suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded dis-

tribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a

cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may

be increased upon using more carbon nanotubes as reinforcement.
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Introduction
Plates with cutouts are extensively used in automotive and

aircraft structures. Cutouts may be of rectangular, circular,

elliptical, super elliptical or polygonal shape. Due to the

complicated configuration of a plate with a cutout, there is sig-

nificantly less research on plates with cutouts in comparison to

those without cut-out. Depending on the application, homoge-

neous isotropic, composite or functionally graded plates may be

perforated to fulfill a desired application.

Representing a type of novel material with fascinating electro-

thermo-mechanical properties, carbon nanotubes (CNTs) have

attracted increasing attention in the past decades. CNTs are a
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promising candidate for the reinforcement of the matrix phase

in a composite. Kwon et al. [1] reported that using a powder

metallurgy fabrication process, carbon-nanotube-reinforced

composites (CNTRCs) may be achieved with a nonuniform dis-

tribution of CNTs through the media. This type of reinforced

composite media is known as functionally graded carbon-nano-

tube-reinforced composite (FG-CNTRC). An overview on the

properties, modeling and characteristics of FG-CNTRC beams,

plates and shells is provided by Liew et al. [2]

It has been shown that the bending moment may be significant-

ly alleviated through a functionally graded distribution of CNTs

in a polymeric matrix [3]. In the five years following the

discovery of this interesting feature, various investigations were

reported on the mechanics of FG-CNTRC structures.

Zhu et al. [4] investigated the free vibration and static response

of FG-CNTRC plates using finite element method [4]. Zhang et

al. investigated the free vibration characteristics of FG-CNTRC

skew plates [5], triangular plates [6] and cylindrical panels [7]

using element free methods. In these works it is shown that the

natural frequencies of plates and panels are affected by the dis-

tribution and volume fraction of CNTs. Zhang et al. [8] investi-

gated the free vibration characteristics of FG-CNTRC plates

resting on an elastic foundation. Lei et al. [9] investigated the

free vibration of composite, laminated FG-CNTRC plates with

general boundary conditions. Malekzadeh and Zarei [10] exam-

ined the free vibration characteristics of laminated plates con-

taining FG-CNTRC layers in an arbitrary straight-sided quadri-

lateral shape. Malekzadeh and Heydarpour [11] investigated the

free vibration and static response of laminated plates with

FG-CNTRC layers using a mixed Navier-layerwise differential

quadrature method. In this research, plates with all edges simply

supported are considered. Natarajan et al. [12] applied a higher

order shear and normal deformable plate formulation to study

the static and free vibrations of single layer FG-CNTRC plates

and also sandwich plates with FG-CNTRC face sheets. Wang

and Shen investigated the linear and nonlinear free vibrations of

a single layer FG-CNTRC plate [13] and also sandwich plates

with stiff core and FG-CNTRC face sheets [14]. In this analysis,

the interaction of the plate with a two parameter elastic founda-

tion is also taken into account. Wang and Shen [15] investigat-

ed the dynamic response of FG-CNTRC plates according to the

von Kármán formulation. In this research, the interaction of a

two parameter elastic foundation and a thermal environment are

also included. The solution method of this research is based on

a two-step perturbation technique and is suitable for plates with

all edges simply supported. Using a mesh-free formulation

proper for arbitrary edge supports, Lei et al. [16] investigated

the elasto-dynamic response of FG-CNTRC plates subjected to

sudden lateral pressure. For more investigations on vibration,

buckling, postbuckling, stress analysis, and nonlinear bending

of FG-CNTRC plates, one may refer to [17-25].

The present research aims to investigate the free vibration char-

acteristics of an FG-CNTRC rectangular plate containing a

central, rectangular cutout. The distribution of CNTs across the

plate thickness are assumed to be either uniform or nonuniform.

A modified rule of mixtures approach is used to obtain the

properties of the composite media. Chebyshev polynomials are

used as the basic shape functions of the Ritz formulation to

construct an eigenvalue problem. The solution method may be

used for perforated FG-CNTRC rectangular plates with arbi-

trary boundary conditions on the outer edges, while the inner

edges are unconstrained. The numerical results allow for the

study of the volume fraction and distribution pattern of CNTs,

plate boundary conditions and hole size.

Modeling
Basic formulation
A rectangular-shaped plate, made of a polymeric matrix, rein-

forced by CNTs whose distribution may be nonuniform, is

considered in the present research. The plate contains a centered

hole, which is assumed to be rectangular-shaped. The cartesian

coordinate system is assigned to the center of the mid-surface

of the plate. In this system, the plate occupies the domain

[−0.5a 0.5a] × [−0.5b 0.5b] × [−0.5h 0.5h]. The hole occupies

the domain [−0.5c 0.5c] × [−0.5d 0.5d] × [−0.5h 0.5h]. The

dimensions of the plate with the assigned coordinate system are

demonstrated in Figure 1.

Figure 1: A schematic of the geometric features of the plate along with
the assigned coordinate system.
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Motivated by the fundamental research of Shen [3], many

investigators take into account the functionally graded distribu-

tion of the volume fraction of reinforcements through the

matrix. Consistent with the possible fabrication processes for

plates, three different functionally graded types of CNT disper-

sion profiles may be assumed and are considered in the present

research: FG-V, FG-O and FG-X [5-7]. A schematic of these

functionally graded types along with the uniformly distributed

(UD) type are shown in Figure 2.

Figure 2: Various graded patterns of FG-CNTRC plates.

The properties of a composite media (i.e., a matrix reinforced

with CNTs) may be obtained according to various homogeniza-

tion techniques. The two commonly used schemes that are ex-

tensively used for composites and FGMs are the Mori–Tanaka

scheme [26] and the rule of mixtures [27]. The conventional

rule of mixtures has the advantage of simplicity; however, when

using CNTRCs, this approach does not provide an accurate esti-

mation of the mechanical properties of the media. Meanwhile,

as explained by Shen [3] and used extensively by other

researchers [28-32], the conventional rule of mixtures approach

may be modified with the introduction of the efficiency parame-

ters. Under such modification, Young’s modulus and the shear

modulus of the composite media take the form:

(1)

In this formula, the properties of the CNT are denoted by a

superscript CN and that those belong to matrix are denoted by a

superscript m. Following the classical solid mechanics notation,

E and G are the elastic modulus and shear modulus of the

constituents, respectively. In comparison to the conventional

rule of mixtures approach, three unknown constants, η1, η2 and

η3, are introduced in Equation 1; these are known as efficiency

parameters. These parameters compensate for the errors gener-

ated due to the conventional rule of mixtures approach for a

CNTRC. The values of these constants are obtained by

matching the data obtained according to the above formula with

those obtained based on the molecular dynamics simulation.

It is worth noting that the volume fraction of CNTs and

polymeric matrix are denoted by VCN and Vm, respectively. Ac-

cording to the partition of unity property, the following condi-

tion should be satisfied at each point of the composite media:

VCN + Vm = 1.

The volume fraction of CNTs is assumed to be either nonuni-

form or uniform across the plate thickness. According to the

above rule, the volume fraction of matrix may also be achieved

and the overall properties of the media may be calculated ac-

cording to Equation 1. Table 1 presents the dispersion profile of

VCN as a function of the thickness coordinate for each of the

UD CNTRC or FG-CNTRC rectangular plates.

Table 1: Volume fraction of CNTs as a function of the thickness coor-
dinate for various CNT distributions [28-34].

CNT Distribution VCN

UD CNTRC

FG-V CNTRC

FG-O CNTRC

FG-X CNTRC

Upon evaluation of the total volume fraction of CNTs across the

plate thickness, it is revealed that all types have the same total

volume fraction of CNTs, that is, . Consequently, the vibra-

tional characteristics of FG-CNTRC and UD-CNTRC rectan-

gular plates may be compared with respect to each other. As

previously shown in Figure 2 and the information in Table 1,

given an FG-X pattern of CNT dispersion, the mid-surface of

the plate is free of CNTs while the top and bottom surfaces have

the maximum volume fraction of CNTs. The volume fraction of

CNTs increases linearly from the mid-plane to the free surfaces

of the plate. The FG-O type of distribution pattern is the inverse

of the FG-X case. In the FG-O distribution, the top and bottom

surfaces are free of CNTs and the mid-surface has the

maximum volume fraction of CNTs. In FG-V type, the bottom

surface is free of CNTs and the top has the maximum volume

fraction of CNTs. Unlike these three types, in the UD case, each

surface of the plate has the same volume fraction of CNTs.
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Similar to the shear modulus and Young’s modulus, Poisson’s

ratio and the mass density of the composite media may be

written in terms of belongings to the CNT and matrix. As

claimed by Shen [28], and as used also by other researchers

[29], Poisson’s ratio depends weakly on position and conse-

quently may be obtained as

(2)

The mass density of a CNTRC media may be obtained accord-

ing to the conventional rule of mixtures approach [13,14].

Therefore, as a function of volume fraction and mass density of

constituents, ρCN and ρm, one may write

(3)

Upon evaluation of the mass fraction for each of the graded

patterns of CNTs, it is concluded that each type has the same

mass fraction of CNTs.

Flexural theories propose an approximate function for the

in-plane and out-of-plane displacement components of the plate.

The most simple flexural theory is the classical plate theory,

which eliminates the transverse shear strain components as well

as the normal strain component. These assumptions are exag-

gerated for moderately thick composites and therefore classical

plate theory results in erroneous results for the structural

response of a CNTRC rectangular plate. On the other hand, first

order shear deformation plate theory (FSDT), which takes into

account the constant transverse shear strain, results in accurate

results for the global properties of moderately thick CNTRC

plates. This is because it takes into account both the rotary iner-

tias and through-the-thickness shear strains [35]. This research

is also developed based on FSDT, which estimates the displace-

ments of the plate in terms of those of the mid-surface and the

cross-section rotations as

(4)

In Equation 4, the subscript zero indicates the characteristics of

the mid-plane. Rotations of the cross-sectional elements about

the x and y axes are denoted by φy and φx. Additionally,

displacements along the x, y and z directions are shown by u, v

and w.

The substitution of Equation 4 into the strain–displacement rela-

tions results in the components of strain on an arbitrary point of

the plate in terms of mid-surface strain components and change

in curvature as

(5)

The strain field on the midsurface of the plate may be obtained

according to the midsurface displacements as

(6)

and the change of curvatures may be obtained in terms of cross-

section rotations as

(7)

where in Equation 6 and Equation 7 (and hereafter), the comma

in the subscript indicates the derivative with respect to the vari-

able following the comma.

Under linear elastic behavior of the composite media, the strain

components may be obtained in terms of strain components ac-

cording to the following generalized Hook law as

(8)
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where the plane-stress stiffnesses of the plate are denote by Qij

components (i,j = 1,2,4,5,6). These constants may be obtained

in terms of the Poisson’s ratio, shear modulus and Young’s

modulus of the composite plate as [29]

(9)

To construct the motion equations of the plate, the Hamilton

principle may be used [35]. For free vibration analysis where

external forces/moments are absent, Hamilton’s principle may

be written as

(10)

where δU is the virtual strain energy of the perforated plate

which may be calculated as

(11)

In the above equation and in the rest of this work, the subscripts

1 and 2 denote a solid rectangle (i.e., a solid rectangle without a

cutout) and the cutout segment, respectively. The strain ener-

gies may be obtained upon integration of the density of the

strain energy over the suitable volume.

(12)

where the shear correction factor is denoted by κ. This parame-

ter is used to compensate for the errors due to the assumption of

constant shear strains across the thickness. The exact value of

this factor is not straightforward and may be obtained under

evaluation of complicated integrals. Since the exact value of

this factor depends on the boundary conditions, geometry of the

media, material and loading, the approximate value of κ = 5/6 is

used in the present research.

Similarly, δT is the variation of the kinetic energy of the plate

which also may be written as

(13)

where the kinetic energy may be obtained as

(14)

Solution procedure
It is known that the equations of motion for a plate with three

translational motion and two rotational motion components may

be achieved using the process of virtual displacements with the

aid of the Green–Gauss theorem. On the other hand, the matrix

representation of the equations of motion may be established

using the application of energy methods to Equation 10. As one

of the most widely known energy-based methods, the Ritz

method is used in the present research. The effectiveness and

efficiency of various types of Ritz methods has been the subject

of many studies [36-39]. In this study, the approximation of the

displacement field is carried out using the Ritz method whose

shape functions are written in terms of the Chebyshev polyno-

mials. As a result, the essential variables may be written as

(15)

In Equation 15, the i-th Chebyshev polynomial of the first kind

is denoted by Pi. These functions in a closed-form expression

may be written as

(16)

Additionally, in Equation 15, the auxiliary functions (Rα(x,y),

where α = u,v,w,x,y) are called the boundary functions, which

are associated with the essential boundary conditions. It is

known that in the Ritz method, the shape functions should at

least satisfy the essential boundary conditions.
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Three types of mechanical boundary conditions are widely used

for each of the edges of the plate: clamped (C), simply sup-

ported (S) and free (F) edges are the assumed types of bound-

ary conditions in the present study. For a clamped edge, three

components of the displacement field and two components of

the rotation should be zero at the edge. For a simply supported

one, the tangential displacement, tangential rotation and lateral

displacement should be zero. Finally, for a free edge, none of

the boundary conditions are applied, and therefore, none of the

displacements and rotations are restrained at the edge. On each

exterior edge of the plate, various boundary conditions may be

defined; however, the interior edges are all assumed to be free

and none of the boundary conditions around the hole are

applied.

Since the Chebyshev polynomials of the fist kind are nonzero

on both ends of the interval (i.e., Pi(±1) ≠ 0), the auxiliary func-

tions Rα, α = u,v,w,x,y should be chosen to satisfy the essential

boundary conditions on the edge when necessary. Each of the

auxiliary functions Rα, α = u,v,w,x,y may be written generally as

(17)

The newly introduced parameters, p, q, r and s, are equal to zero

or one and their magnitude depends on the essential boundary

conditions at the edge. As an example, consider a perforated

plate with clamped boundary conditions at x = −0.5a and

x = +0.5a, free at y = −0.5b, and simply supported at y = +0.5b.

For such a case, the auxiliary functions (Rα ,  where

α  = u,v,w,x,y) are given as

(18)

Finally, the substitution of the series expansion of Equation 15

into Equation 12 and Equation 14, and inserting the results into

the Hamilton principle of Equation 10 results in the motion

equations given as

(19)

In the above equation, M is the mass matrix and, K is the stiff-

ness matrix. Additionally, the mechanical displacement vector

is denoted by X, which consists of the unknown displacements

Uij, Vij, Wij, Xij and Yij.

Since the free vibration response is under investigation, X = 

sin(ω t+φ) may be considered, where ω is the natural frequen-

cy. The substitution of this equation into Equation 19 results in

an eigenvalue problem as

(20)

This eigenvalue problem can be solved using the standard

eigenvalue algorithms provided in a Matlab code. It is worth

noting that trapezoidal numerical integration is used to evaluate

the elements of the mass and stiffness matrices. In numerical in-

tegration, the interval is divided into 100 segments.

Results and Discussion
The free vibration characteristics of FG-CNTRC rectangular

plates with a centric rectangular hole were formulated in the

previous sections. In the following, to assure the effectiveness

and accuracy of the presented solution method, convergence

and comparison studies are carried out. Next, parametric studies

are provided to explore the effects of carbon nanotube charac-

teristics on the frequencies of the perforated plate. The

following convention is established for boundary conditions

herein and is used in the rest of this work. For instance, an

SCFS plate indicates a plate which is simply supported at

x = −0.5a and y = +0.5b, clamped at y = −0.5b, and free at

x = +0.5b.

In the numerical results of the present research, isotropic

poly(methyl methacrylate), referred to as PMMA, is selected as

the polymeric matrix. The mechanical properties of the PMMA

are Em = 2.5 GPa, νm = 0.34 and ρm = 1150 kg/m3. Reinforce-

ment of the matrix is chosen as (10,10)-armchair SWCNT. For

this kind of reinforcement, which is orthotropic, the material

properties are given as  = 5.6466 TPa,  = 7.0800 TPa,

G12 = 1.9445 TPa, ν = 0.175 and ρ = 1400 kg/m3 [40].

Finally, the efficiency parameters should be known to obtain the

overall properties of the composite media, which are the

stretching, coupling and bending stiffnesses. As mentioned

before, these parameters are obtained by matching the data ob-

tained by the present modified rule of mixtures approach and

the molecular dynamics simulations of other researchers. A mo-
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Table 2: Convergence study on the first three frequency parameters  of SSSS isotropic homogeneous square plates with
a/h = 100, ν = 0.3 and two cutout ratios.

Nx = Ny c/a=0.5 c/a=0.3

4 25.3219 67.0738 96.5711 21.2056 59.9002 91.5117
6 24.3337 52.4935 79.6489 20.7782 49.9952 76.7551
8 23.9120 48.0090 76.8117 20.3092 49.4326 76.0125

10 23.7717 44.2278 74.2547 19.9607 48.9185 75.6918
12 23.7394 42.6920 72.9483 19.8747 48.1375 75.3304
14 23.7177 42.1001 72.4587 19.8625 47.2216 74.9326
16 23.6514 41.6152 72.1370 19.7767 46.4394 74.6078
18 23.5996 41.2933 71.8660 19.7260 45.9450 74.3541
20 23.5641 41.0550 71.7298 19.6490 45.5670 74.2122

Liew et al. [43] 23.441 41.779 71.737 19.391 44.799 73.656
Lam et al. [44] 23.235 39.712 69.868 19.357 44.207 73.906

lecular dynamics simulation was performed by Han and Elliott

[41]; however, since the condition of maximum thickness for

CNTs was not satisfied in this research, their simulations were

re-examined by Shen [28]. In the simulations of Han and Elliott

[41], the effective thickness of the CNTs is set equal to at least

0.34 nm, which is open to criticism since it violates the criteria

proposed by Wang and Zhang [42]. The molecular dynamics

simulations of Shen [28] result in the following efficiency pa-

rameters for the CNTRC media that depend on the volume frac-

tion of CNTs: η1 = 0.137 and η2 = 1.022 for  = 0.12;

η1 = 0.142 and η2 = 1.626 for  = 0.17; and η1 = 0.141 and

η2 = 1.585 for  = 0.28. For each case, the efficiency param-

eter η3 is equal to 0.7η2. The shear modulus G13 is taken equal

to G12, whereas G23 is taken equal to 1.2G12 [28].

Convergence and comparison studies
Convergence and comparison studies are presented in this

section. First, the convergence study allows for the necessary

shape functions to be obtained with the series expansion of the

Ritz method, with results shown in Table 2. In this study, the

first three frequency parameters of a square plate with a square

cutout at the center are evaluated in terms of the number of

shape functions. Two different cutout sizes are considered. The

results are also compared with those of Liew et al. [43] and

Lam et al. [44]. In the solution method of Liew et al. [43], the

basic L-shaped element, which is divided into appropriate sub-

domains that are dependent upon the location of the cutout, is

used as the basic building element. Lam et al. [44], on the other

hand, obtained the frequencies according to a Ritz method

whose shape functions are generated using the Gram–Schmidt

process. In both of the above-mentioned references, the plate is

formulated using the classical plate theory and for the sake of

comparison, in the present analysis, the side-to-thickness ratio is

chosen as a/h = 100. It is seen that the results of our study

match well with those of Liew et al. [43] and Lam et al. [44]

after the adoption of Nx = Ny = 20 shape functions. Therefore, in

the subsequent results, the number of shape functions in both

directions is chosen as 20.

In Table 3, the first four frequencies of a plate with a centric

cutout clamped all around is evaluated. In this study, the plate is

also a square, and for the sake of comparison, the side-to-thick-

ness ratio is chosen as a/h = 100. Four different square cutout

sizes, c/a = 0.1, 0.2, 0.3 and 0.5, are considered and in each case

our results are compared with those of Malekzadeh et al. [45]

and Mundkur et al. [46]. Malekzadeh et al. [45] obtained the

frequencies according to a three dimensional elasticity formula-

tion and using the Chebyshev–Ritz formulation, whereas

boundary characteristics of orthogonal polynomial functions are

invoked into the Ritz formulation by Mundkur et al. [46] to

obtain the plate frequencies. It is seen that our results are in

good agreement with those of both Malekzadeh et al. [45] and

Mundkur et al. [46].

Table 4 presents the frequencies of a thin square plate that is

simply supported all around and contains a square cutout at the

center. The cutout size is c/a = 0.4 and for the sake of compari-

son, the side-to-thickness ratio of the square plate is chosen as

a/h = 100. The results of this study are compared with those of

Liew et al. [43]. In the tabulated results, SS indicates the

double-symmetric modes and AA indicates the double-antisym-

metric modes. On the other hand, modes that are symmetric in

one direction and antisymmetric on the other direction are

denoted by AS. Again, it is seen that the results of our study are

in good agreement with the available data, which verifies the

accuracy of the present method.
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Table 3: First four frequency parameters  for square CCCC isotropic homogeneous plates with ν = 0.3, a/h = 100 and various
square cutout sizes.

c/a Source

0.1 Malekzadeh et al. [45] 36.7943 73.9968 74.0389 108.1382
Mundkur et al. [46] 36.5045 73.4142 73.4142 107.3528
Present 36.3141 73.2476 73.2476 106.9850

0.2 Malekzadeh et al. [45] 37.9162 73.8299 73.8882 105.9458
Mundkur et al. [46] 38.1073 73.6267 73.6267 105.4715
Present 37.2017 72.7578 72.7578 104.7691

0.3 Malekzadeh et al. [45] 41.6279 71.2093 71.3769 103.6814
Mundkur et al. [46] 41.7912 73.9799 73.9799 104.3388
Present 40.9624 69.0943 69.0943 101.9502

0.5 Malekzadeh et al. [45] 66.5457 79.1407 79.2248 109.2086
Mundkur et al. [46] 65.7150 81.6796 81.6796 110.8569
Present 65.3050 77.7074 77.7074 107.5626

Table 5: First six natural frequencies  of square CCCC FG-CNTRC plates without cutout and various side-to-thickness ratios.

a/h = 10 a/h = 20 a/h = 50

Present Zhu et al. [4] Present Zhu et al. [4] Present Zhu et al. [4]

21.4953 21.544 32.5463 32.686 41.7819 42.078

28.4093 28.613 38.9996 39.279 47.7825 48.309

41.2024 41.431 53.4057 54.560 62.3669 63.755

41.2818 42.119 69.5133 70.149 86.1407 90.293

45.5711 45.796 73.3744 73.926 104.7524 106.513

46.9814 47.055 75.1651 78.522 108.3582 110.055

Table 4: Frequency parameters,  for square SSSS
isotropic homogeneous plates with a square cutout with ν = 0.3,
c/a = 0.4 and a/h = 100.

Mode Type Source

SS Liew et al. [43] 20.7240 85.4180 136.2900
Present 20.9151 85.8040 136.1697

AS Liew et al. [43] 41.9070 118.7200 181.7200
Present 42.1561 119.6766 177.3160

AA Liew et al. [43] 71.4990 189.3300 200.9000
Present 71.9878 188.1986 198.4664

The next comparison study gives the frequency parameters of

the FG-CNTRC plate with clamped boundary conditions. The

frequencies are evaluated from the proposed approach of our

study and compared with those given by Zhu et al. [4] based on

the finite elements method. It is worth noting that in the analy-

sis of Zhu et al. [4], the matrix is made from PmPV with

elasticity modulus Em = 2.1 GPa, Poisson’s ratio νm = 0.34

and mass density ρm = 1150 kg/m3. The volume fraction of

CNTs is set equal to 0.17 and the dispersion pattern of the

CNTs is of the FG-V type. In such case, the efficiency parame-

ters are obtained as η1 = 0.149 and η2 = η3 = 1.381 [4]. Further-

more, G23 = G13 = G12 is assumed [4]. The frequency parame-

ter is defined as  as shown in Table 5. As

can be seen, the first six frequencies are in good agreement with

those obtained by Zhu et al. [4].

The next comparison study is devoted to the case of a

nonsquare plate with a nonsquare cutout. A thin plate with

a/h = 100 and CSCS boundary conditions is considered. The

length-to-width ratio is equal to a/b = 1.125. The cutout dimen-

sions are the same as those of Liew et al. [43], that is, c/a = 1/3
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Table 7: Fundamental and second symmetric mode frequency parameters, , for a SSSS, square, unidirectional, orthotropic plate
with a square cutout with c/a = d/b = 1/2 and various a/h ratios.

h/a Reddy [48] Ovesy and Fazilati [49] Present Reddy [48] Ovesy and Fazilati [49] Present

0.010 51.232 51.608 51.4407 112.220 111.399 112.8712
0.040 48.907 49.049 49.0386 103.430 102.478 103.4018
0.050 47.934 47.975 47.9682 100.100 99.129 99.8877
0.100 42.693 42.108 42.0505 83.451 82.654 82.4266
0.200 34.069 32.416 32.1979 59.074 59.071 60.7709

and d/b = 1/3. The first four frequencies of the plate are ob-

tained and compared with the available data in the literature. It

is worth noting that, in this case, the experimental results of

Aksu and Ali [47] are also available. A comparison is provided

in Table 6. It is seen that the results of our study match well

with the available data in the literature.

Table 6: First four frequency parameters, , for a
CSCS, rectangular, isotropic, homogeneous plate with a rectangular
cutout with ν = 0.3, c/a = d/b = 1/3, a/b = 9/8 and a/h = 100.

Liew et
al. [43]

Aksu et al.
[47] (Exp.)

Aksu et
al. [47]

Lam et
al. [44] Present

32.425 33.22 33.83 34.04 31.2802

53.426 53.01 53.99 54.57 54.2069

62.353 61.91 62.49 65.05 60.0453

94.839 91.87 95.03 95.38 92.0645

Table 7 presents the fundamental and second symmetric modes

of the frequency parameters of a unidirectional, orthotropic

plate in a square platform with a centric square cutout. The ma-

terial properties of the layer are E11 = 140 GPa, E22 = 3.5 GPa,

G12 = 0.5 GPa, ν12 = 0.25 and ρ = 4000 kg/m3. The plate is

simply supported all around and a cutout size is chosen as

c/a = 0.5. The results are provided for various side-to-thickness

ratios. A comparison is made between the results of our study

with those obtained by Reddy [48] based on the finite elements

method and by Ovesy and Fazilati [49] based on the finite strip

method. The results are provided in Table 7. It can be seen that

the results of our study match well with the available data in the

literature, which proves the correctness of the formulation and

solution method of the present research.

Parametric studies
After validating the formulation and proposed method of the

present research, the parametric studies are provided in this

section. In this section, the frequency parameter is defined as

, where Dm is the flexural rigidity of a

plate made from the polymeric matrix.

Tables 8–11 present the first five frequencies of CNTRC plates

in a square shape and side-to-thickness ratio of a/h = 20.

Table 8, Table 9, Table 10 and Table 11 are associated with

CCCC, CFFF, SSSS and CFCF plates, respectively. The

volume fraction of CNTs is chosen as  = 0.17. In each case,

the frequencies are provided for three different perforation sizes

and four different graded patterns of CNTs. It is seen that, simi-

lar to the case of plates without a cutout, in plates with a hole,

FG-X also has the highest fundamental frequency and FG-O has

the lowest. The influence of hole size on fundamental frequen-

cy is not monotonic. For instance, in CCCC plates, the funda-

mental frequency of a plate increases when the hole size in-

creases from c/a = 0.1 to 0.3 and 0.5. This conclusion is qualita-

tively compatible with the results of Malekzadeh et al. [45] for

CCCC FGM plates. For SSSS and CFFF plates, on the other

hand, the trend is the inverse and the fundamental frequency of

a plate decreases when the hole size increases from c/a = 0.1 to

0.3 and 0.5. The results presented in Tables 8–11 contain both

the flexural and extensional as well as coupled (in FG-V type)

vibrational modes. As seen from Table 10, the fourth and fifth

frequencies of SSSS plates without a cutout or with a cutout

size of c/a = 0.1 and 0.3 are the same. These frequencies are

in-plane modes and, due to the symmetry of geometry and

boundary conditions, they are equal. It is seen that the in-plane

frequencies of FG-X and FG-O plates are equal.

Table 12 presents the first five frequencies (including both

in-plane and out-of-plane) of square plates made of FG-CNTRC

with centric cutouts of various sizes. The side-to-thickness ratio

is set equal to a/h = 20 and the plate is clamped all around. Nu-

merical results are given for three different volume fractions of

CNTs and four different graded patterns of CNTs. Similar to the

case of plates without a cutout, an increase in the CNT volume

fraction yields a higher natural frequency of the plate. The

plates with an FG-X pattern of CNTs have higher frequencies in

comparison to UD, FG-V and FG-O plates.
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Table 8: First five natural frequency parameters for square FG-CNTRC CCCC plates with a centric cutout. Geometrical characteristics of the plate are
a/b = 1, h/a = 0.05 and various c/a ratios. The volume fraction of CNTs is set equal to  = 0.17.

c/a Type

0.0 UD 104.7581 127.4624 177.3348 216.4439 229.8165
FG-X 112.9857 136.1313 187.5684 228.1375 241.8078
FG-O 90.1519 114.9774 166.5357 195.1187 209.9151
FG-V 97.1637 122.2427 175.0384 205.6517 220.5951

0.1 UD 105.4667 127.4527 178.2958 210.3946 229.2000
FG-X 114.0739 136.1672 188.9056 221.1219 241.2009
FG-O 90.3317 114.9383 167.1189 190.7122 209.3028
FG-V 97.5556 122.2235 175.8912 200.6315 219.9939

0.3 UD 120.4439 126.9656 169.8070 188.2571 218.9324
FG-X 130.6054 136.3973 181.1849 199.9691 230.5113
FG-O 102.7080 112.4737 150.9616 174.3439 199.9412
FG-V 111.1976 120.2882 160.6058 183.8592 210.3512

0.5 UD 144.3419 145.0951 220.7844 229.0503 231.6397
FG-X 155.3892 156.2246 233.7825 242.7781 244.6759
FG-O 129.1618 129.9906 196.1895 205.0887 209.8574
FG-V 137.8894 138.7569 208.3156 208.3156 217.4388

Table 9: First five natural frequency parameters for square, FG-CNTRC, CFFF plates with a centric cutout. Geometrical characteristics of the plate
are a/b = 1, h/a = 0.05 with various c/a ratios. The volume fraction of CNTs is set equal to  = 0.17.

c/a Type

0.0 UD 22.7727 24.3214 40.0851 69.2495 83.6431
FG-X 27.0842 28.4568 44.0066 69.7239 89.4504
FG-O 16.7435 18.7782 36.1389 69.7239 79.6264
FG-V 19.1381 21.0721 38.7339 69.6796 84.0389

0.1 UD 22.6504 24.2757 40.0027 68.9550 83.8138
FG-X 26.9308 28.4058 43.8532 69.4269 89.3451
FG-O 16.6641 18.7287 36.0570 69.4269 79.5320
FG-V 19.0430 21.0212 38.6399 69.3808 83.9355

0.3 UD 20.4172 24.0224 37.9453 65.3384 81.1811
FG-X 24.0635 28.1470 41.3325 65.7754 86.5017
FG-O 15.2671 18.4600 34.5625 65.7754 76.7925
FG-V 17.3638 20.7497 36.9148 65.6852 81.0431

0.5 UD 16.9516 23.0500 34.9990 55.9159 75.0937
FG-X 19.6883 27.0578 38.2949 56.2537 79.9457
FG-O 12.9576 17.6252 31.7571 56.2537 70.7251
FG-V 14.6594 19.8497 33.9178 56.0921 74.7579

Conclusion
The natural frequencies of carbon-nanotube-reinforced, com-

posite laminated plates with a rectangular hole in the center was

analyzed in this research. The properties of the plate were ob-

tained according to a modified rule of mixtures, which includes

the efficiency parameters to account for the size-dependent

characteristics of the nanocomposite. The distribution of CNTs

across the plate thickness was both uniform or functionally

graded. An energy-based Ritz formulation was constructed to

obtain the frequencies of the plate. The basis shape functions

were obtained using the Chebyshev polynomials, suitable for

arbitrary in-plane and out-of-plane boundary conditions on the
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Table 10: First five natural frequency parameters for square, FG-CNTRC, SSSS plates with a centric cutout. Geometrical characteristics of the plate
are a/b = 1, h/a = 0.05 with various c/a ratios. The volume fraction of CNTs is set equal to  0.17.

c/a Type

0.0 UD 63.2598 83.2741 132.0746 143.7036 143.7036
FG-X 72.8708 92.2430 141.7590 144.7344 144.7344
FG-O 49.4292 72.4990 123.2571 144.7344 144.7344
FG-V 55.2524 78.2905 130.3768 144.7268 144.7268

0.1 UD 62.8020 83.1849 131.8828 144.8261 144.8261
FG-X 72.4414 92.1454 141.5884 145.8609 145.8609
FG-O 49.0286 72.4102 123.0916 145.8609 145.8609
FG-V 54.8235 78.1925 130.2147 145.8510 145.8510

0.3 UD 52.8233 78.3506 111.6736 130.6302 154.9683
FG-X 60.5716 87.1986 119.1929 139.3437 156.0783
FG-O 41.9863 67.4468 100.7698 123.2779 156.0783
FG-V 46.7420 73.0816 107.2829 129.9159 156.0612

0.5 UD 49.7695 72.2115 75.6430 110.4459 153.9671
FG-X 56.2066 80.5715 80.8909 118.0424 165.6159
FG-O 40.9160 31.2728 69.6564 103.1278 136.3056
FG-V 45.0900 66.7584 73.9966 108.6995 146.1801

Table 11: First five natural frequency parameters for square, FG-CNTRC, CFCF plates with a centric cutout. Geometrical characteristics of the plate
are a/b = 1, h/a = 0.05 with various c/a ratios. The volume fraction of CNTs is set equal to  0.17.

c/a Type

0.0 UD 100.1209 100.5478 106.0262 130.1245 142.0229
FG-X 108.3648 108.7314 114.1163 138.8282 143.0241
FG-O 84.7084 85.3698 92.0274 118.2125 143.0241
FG-V 91.7731 92.3623 98.8950 125.5211 142.9107

0.1 UD 100.2534 100.3429 106.3842 129.9112 143.1875
FG-X 108.5295 108.6060 114.7279 138.6133 144.1970
FG-O 84.6851 85.1671 92.0179 117.9871 144.1970
FG-V 91.8120 92.1557 99.0190 125.2861 144.0832

0.3 UD 100.7600 101.2200 118.8467 128.0103 153.1897
FG-X 108.9985 109.4736 128.8350 137.2623 154.2720
FG-O 85.4922 85.9562 101.4103 114.2352 151.0984
FG-V 92.5250 93.0347 109.7041 121.8601 154.1448

0.5 UD 101.6312 101.6706 134.2600 134.9668 164.4286
FG-X 109.8563 109.9006 144.0598 144.7920 165.5952
FG-O 86.8830 86.5131 118.6095 119.3833 165.5945
FG-V 93.5251 93.5551 126.8153 127.6207 165.3665

exterior and the cutout is assumed to be free. After performing

comparison studies for isotropic and unidirectional plates with a

centric cutout, the parametric studies were given for plates both

with and without a cutout. It is shown that, similar to

FG-CNTRC plates without a cutout, increasing the CNT

volume fraction results in higher frequencies of the plate

with a cutout. Furthermore, FG-X plates have a higher natural

frequency in comparison to the other three patterns of CNTs.

It was also demonstrated that the variation of fundamental

frequency of a perforated plate with respect to the

hole size is not monotonic and is dependent on the boundary

conditions.
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Table 12: First five natural frequency parameters for square, FG-CNTRC, CCCC plates with a centric cutout. The geometrical characteristics of the
plate are a/b = 1, h/a = 0.05 and c/a = 0.5.

c/a Type

0.1 0.12 UD 83.9188 100.3679 139.1968 165.6225 180.1856
FG-X 89.8427 105.9079 145.2992 172.7141 187.9588
FG-O 72.7097 91.3377 131.5790 151.3920 165.3920
FG-V 78.0171 96.2557 136.8848 158.4278 173.2206

0.17 UD 105.4667 127.4527 178.2958 210.3946 229.2000
FG-X 114.0739 136.1672 188.9056 221.1219 241.2009
FG-O 90.3317 114.9383 167.1189 190.7122 209.3028
FG-V 97.5556 122.2235 175.8912 200.6315 219.9939

0.28 UD 117.9367 139.0787 190.6561 229.2992 249.0083
FG-X 128.1334 152.0944 210.3997 243.4859 266.0974
FG-O 103.9972 126.0241 176.2058 214.6312 232.7102
FG-V 111.7471 135.8179 190.8244 224.2330 244.4012

0.3 0.12 UD 95.8721 100.3370 134.1470 147.7287 172.0447
FG-X 102.8278 106.5212 141.7684 154.5267 179.4637
FG-O 82.7712 89.7543 120.3341 137.5941 158.4212
FG-V 89.0013 95.2007 127.2195 143.6480 165.5769

0.17 UD 120.4439 126.9656 169.8070 188.2571 218.9324
FG-X 130.6054 136.3973 181.1849 199.9691 230.5113
FG-O 102.7080 112.4737 150.9616 174.3439 199.9412
FG-V 111.1976 120.2882 160.6058 183.8592 210.3512

0.28 UD 134.7884 139.7667 186.8796 202.9367 237.6707
FG-X 147.0185 152.8559 201.8094 222.8837 254.4027
FG-O 118.3189 125.0040 169.6503 186.3970 221.8681
FG-V 127.5548 135.0123 180.5800 201.1201 233.5064

0.5 0.12 UD 114.3763 114.9769 174.3637 180.8571 182.4758
FG-X 121.0992 121.7038 182.9347 189.6084 190.7261
FG-O 102.9381 103.5831 156.5728 163.3712 166.6608
FG-V 108.9502 109.6062 165.2573 172.0949 174.7810

0.17 UD 144.3419 145.0951 220.7844 229.0503 231.6397
FG-X 155.3892 156.2246 233.7825 242.7781 244.6759
FG-O 129.1618 129.9906 196.1895 205.0887 209.8574
FG-V 137.8894 138.7569 208.3156 208.3156 217.4388

0.28 UD 158.9989 159.7737 242.3844 251.0307 252.5998
FG-X 173.8958 174.8389 258.3101 268.3936 270.2030
FG-O 143.1568 143.9204 223.0877 231.1761 234.5069
FG-V 154.2322 155.1098 234.8549 244.0462 247.0420
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